The coevolution of transitive inference and memory capacity in the hawk–dove game

Publication date: 7 November 2018Source: Journal of Theoretical Biology, Volume 456Author(s): Kazuto Doi, Mayuko NakamaruAbstractTransitive inference (TI) that uses known relationships to deduce unknown ones (using A > B and B > C to infer A > C given no direct interactions between A and C) to assess the opponent's strength, or resource-holding potential (RHP), is widely reported in animals living in a group. This sounds counter-intuitive because TI seems to require social cognition and larger memory capacity than other inference that does not require social cognition as much as TI; individuals need abilities to identify others, observe contests among others and keep the results in memory. We examine the coevolution of memory and transitive inference by the evolutionary simulations, using the asymmetric hawk–dove game. When a cost for losers is higher than a reward for winners, we found that the immediate inference strategy (II), which estimates the opponent's strength based on the past history of the direct fights, evolves with the large memory capacity, while the TI strategy, which estimates the unknown opponent's strength by transitive inference, evolves with the limited memory capacity. When a cost for losers is slightly higher than a reward for winners, the II strategy with the large memory capacity has an evolutionary advantage over the TI strategy with the limited memory capacity. It is because the direct fights are not so costly that more information abo...
Source: Journal of Theoretical Biology - Category: Biology Source Type: research
More News: Biology | Study