Synergistic effect between ultrasound and fierce mechanical activation towards mineral extraction: A case study of ZnO ore.

In this study, as a novel mechanical activation style, bead milling (BM) was presented and ZnO ore was selected to determine its effectiveness. Results showed that median particle size of ZnO ore could be pulverized to as low as 1/164 of its original value (from ∼29.2 μm to ∼178 nm), indicating much higher activation potential of BM than that of conventional ball milling. Besides, structure destruction, even phase transformation with the direct participation of airborne CO2 occurred. All these processes rendered the superior activation capacity of BM. In view of the extraction promotion, the combination of ultrasound and BM exerted more pronounced effect than those of individual ones, indicating the synergistic effect between extra energy input (by ultrasound) and inner energy storage (by fierce BM). The classic shrinking core model with the product layer diffusion as the rate-controlling step was found to well model the extraction kinetics. The modeling disclosed high capability of ultrasound and BM combination in decreasing the activation energy (Ea) (from 54.6 kJ/mol to 26.4 kJ/mol), while ultrasound, BM could only decrease the Ea to 44.9 kJ/mol, 41.5 kJ/mol, respectively. The dual roles of ultrasound were specially highlighted: (i) participation in the extraction process via direct energy input, (ii) regulation of the aggregation that the activated ore suspension was confronted with. PMID: 30080538 [PubMed]
Source: Ultrasonics Sonochemistry - Category: Chemistry Authors: Tags: Ultrason Sonochem Source Type: research
More News: Men | Study | Ultrasound