Bioprinting of Glioma Stem Cells Improves Their Endotheliogenic Potential

In this study, the viability of cells after bioprinting was 86.27 ± 2.41%. Furthermore, compared with traditional suspension culture, the proliferation of 3D printed GSCs was more stable. Through the transmission electron microscopy (TEM), numerous long microvilli of cells cultured in 3D bioprinted scaffolds were observed. 3D bioprinted GSCs also have more abundant mitochondria and rough endoplasmic reticulum. Additionally, the stemness properties, the expression of tumor angiogenesis-related genes and vascularization potential of 3D bioprinted GSCs in vitro were higher than that of suspension cultured cells. In summary, 3D bioprinted cell-laden hydrogel scaffolds provide a proper model for investigating the biological characteristics of GSCs and tumor angiogenesis.Graphical Abstract
Source: Colloids and Surfaces B: Biointerfaces - Category: Biochemistry Source Type: research