Viruses, Vol. 10, Pages 412: Disruption by SaCas9 Endonuclease of HERV-Kenv, a Retroviral Gene with Oncogenic and Neuropathogenic Potential, Inhibits Molecules Involved in Cancer and Amyotrophic Lateral Sclerosis

Viruses, Vol. 10, Pages 412: Disruption by SaCas9 Endonuclease of HERV-Kenv, a Retroviral Gene with Oncogenic and Neuropathogenic Potential, Inhibits Molecules Involved in Cancer and Amyotrophic Lateral Sclerosis Viruses doi: 10.3390/v10080412 Authors: Gabriele Ibba Claudia Piu Elena Uleri Caterina Serra Antonina Dolei The human endogenous retrovirus (HERV)-K, human mouse mammary tumor virus like-2 (HML-2) subgroup of HERVs is activated in several tumors and has been related to prostate cancer progression and motor neuron diseases. The cellular splicing factor 2/alternative splicing factor (SF2/ASF) is a positive regulator of gene expression, coded by a potent proto-oncogene, amplified, and abnormally expressed in tumors. TAR DNA-binding protein-43 (TDP-43) is a DNA/RNA-binding protein, negative regulator of alternative splicing, known for causing neurodegeneration, and with complex roles in oncogenesis. We used the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology, with the Cas9 system from Staphylococcus aureus (SaCas9), to disrupt the HERV-K(HML-2)env gene, and evaluated the effects on cultured cells. The tool was tested on human prostate cancer LNCaP cells, whose HERV-Kenv transcription profile is known. It caused HERV-K(HML-2)env disruption (the first reported of a HERV gene), as evaluated by DNA sequencing, and inhibition of env transcripts and proteins. The HERV-K(HML-2)env disruption was found to interfere with importan...
Source: Viruses - Category: Virology Authors: Tags: Communication Source Type: research