Will Increased Understanding of Cellular Senescence Lead to an End to Cancer?

Selective destruction of senescent cells in old tissues offers the promise of some degree of rejuvenation, coupled with effective therapies for a range of age-related diseases that currently cannot be controlled. In the past few years, a number of companies have raised venture funding for the development of senolytic therapies, those capable of removing some portion of senescent cells with an acceptable side-effect profile. The potential market is enormous, and thus despite the many potential competitors, any new mechanism by which senescent cells can be destroyed might be the pathway to success and revenue for the individuals and organizations involved in that research. A great deal more attention and funding is being devoted to the biochemistry of senescent cells than was the case even five years ago. Cellular senescence is also of great interest to cancer researchers. Senescence in response to DNA damage is a way in which our biochemistry removes the riskiest cells from circulation. Senescence irreversibly shuts down the ability to replicate, senescent cells secrete signals to attract the immune system to the vicinity, so that problem cells can be destroyed, and in any case most senescent cells self-destruct shortly after entering this state. This works quite well at the outset, but not all senescent cells are destroyed. Eventually, there are enough of them that their signaling results in significant inflammation and disarray in the surrounding tissue - and that act...
Source: Fight Aging! - Category: Research Authors: Tags: Medicine, Biotech, Research Source Type: blogs

Related Links:

Yicheng Ni Cancer remains a major cause of death globally. Given its relapsing and fatal features, curing cancer seems to be something hardly possible for the majority of patients. In view of the development in cancer therapies, this article summarizes currently available cancer therapeutics and cure potential by cancer type and stage at diagnosis, based on literature and database reviews. Currently common cancer therapeutics include surgery, chemotherapy, radiotherapy, targeted therapy, and immunotherapy. However, treatment with curative intent by these methods are mainly eligible for patients with localized diseas...
Source: Cancers - Category: Cancer & Oncology Authors: Tags: Review Source Type: research
Conclusion and Perspectives Being exquisitely regulated by “writers,” “erasers,” and “readers,” additional repelled proteins or miRNAs, m6A modification relates to nearly any step of mRNA metabolism, as well as ncRNA processing and circRNA translation. There is compelling evidence suggesting that m6A modification is especially critical in a variety of pathologic and physiologic immune responses including T cell homeostasis and differentiation, inflammation, and type I interferon production. Further results have indicated that aberrancies of interferon and Th17 frequencies in systemic lu...
Source: Frontiers in Immunology - Category: Allergy & Immunology Source Type: research
Li Liu, Jiajing Lin and Hongying He* Department of Obstetrics and Gynecology, Liuzhou Worker’s Hospital, Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China Background and Objective: Endometrial cancer (EC) is a common gynecological malignancy worldwide. Despite advances in the development of strategies for treating EC, prognosis of the disease remains unsatisfactory, especially for advanced EC. The aim of this study was to identify novel genes that can be used as potential biomarkers for identifying the prognosis of EC and to construct a novel risk stratification using these genes. Me...
Source: Frontiers in Genetics - Category: Genetics & Stem Cells Source Type: research
Conclusion and Perspective With in-depth understandings of antibodies, linkers, and payloads, ADCs have also achieved great development. The linkage strategy and target diversity have already improved the delivery of the payloads to tumor tissues and reduced exposure to normal tissues. With the development of payloads, some novel potent payloads are used by ADCs, which allows researchers to exploit novel linkers to attach the antibody and payloads without disturbing their potency (Dragovich et al., 2018). Furthermore, some irrelevant antigen-target ADCs also may exert toxicity to tumor cells due to the vascular gap of tum...
Source: Frontiers in Pharmacology - Category: Drugs & Pharmacology Source Type: research
Conclusions: PGC1β regulates breast cancer tumor growth and metastasis by SREBP1-mediated HKDC1 expression. This provides a novel therapeutic strategy through targeting the PGC1β/HKDC1 signaling pathway for breast cancer treatment. Introduction Breast cancer is a very common cancer with significant premature mortality in women. Around 12% of women in USA will have chance to be diagnosed with breast cancer during their lifetimes (1, 2). The development of breast cancer is regulated by many factors, and even as average survival rates have increased significantly as a result of many advanced treatments, the ...
Source: Frontiers in Oncology - Category: Cancer & Oncology Source Type: research
Markus Hartl* and Rainer Schneider Center of Molecular Biosciences (CMBI), Institute of Biochemistry, University of Innsbruck, Innsbruck, Austria The neuronal proteins GAP43 (neuromodulin), MARCKS, and BASP1 are highly expressed in the growth cones of nerve cells where they are involved in signal transmission and cytoskeleton organization. Although their primary structures are unrelated, these signaling proteins share several structural properties like fatty acid modification, and the presence of cationic effector domains. GAP43, MARCKS, and BASP1 bind to cell membrane phospholipids, a process reversibly regulate...
Source: Frontiers in Oncology - Category: Cancer & Oncology Source Type: research
Yi He†, Wenyong Long† and Qing Liu* Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China Super-enhancers (SEs) refer to large clusters of enhancers that drive gene expressions. Recent data has provided novel insights in elucidating the roles of SEs in many diseases, including cancer. Many mechanisms involved in tumorigenesis and progression, ranging from internal gene mutation and rearrangement to external damage and inducement, have been demonstrated to be highly associated with SEs. Moreover, translocation, formation, deletion, or duplication of SEs themselves co...
Source: Frontiers in Pharmacology - Category: Drugs & Pharmacology Source Type: research
Discussion Suppressor of cytokine signaling 1 is an essential molecule for maintaining immune homeostasis and subverting inflammation. Disorders arising from excess inflammation or SOCS1 deficiency can be potentially treated with SOCS1 mimetics (Ahmed et al., 2015). While SOCS1 has promising potential in many disorders, it should be noted that new targets and actions of SOCS1 are still being discovered and not all the effects of this protein are beneficial in autoimmune diseases and cancer. For instance, SOCS1 degrades IRS1 and IRS2, required for insulin signaling, via the SOCS Box domain, thus, limiting its potential in ...
Source: Frontiers in Pharmacology - Category: Drugs & Pharmacology Source Type: research
Conclusions: CAR T cell therapies have demonstrated the clinical benefits of harnessing our body's own defenses to combat tumor cells. Similar research is being conducted on lesser known modifications and gene-modified immune cells, which we highlight in this review. Introduction Chimeric antigen receptors and engineered T cell receptors (based on previously identified high affinity T cell receptors) function by redirecting T cells to a predefined tumor-specific (or tumor-associated) target. Most of these modifications use retroviral or lentiviral vectors to integrate the construct, and most of the receptors ...
Source: Frontiers in Oncology - Category: Cancer & Oncology Source Type: research
In conclusion, the high structural diversity of these compounds pinpoints the significant range of inhibition strategies that can be conceived to target the class I methyltransferases. Although the structural details of the various members of this family are unique, the success stories of drug design for several enzymes belonging to this family portends the likely achievement of discovering potent and selective inhibitors of METTL3/METTL14. Author Contributions AF and AP wrote the manuscript. ZI revised and edited manuscript and prepared figures. Funding This work was supported by Associazione Italiana Ricerca sul Canc...
Source: Frontiers in Oncology - Category: Cancer & Oncology Source Type: research
More News: Acute Leukemia | Acute Myeloid Leukemia | Biochemistry | Biotechnology | Cancer | Cancer & Oncology | Carcinoma | Chemistry | Chemotherapy | Fish | Funding | Genetics | Hepatocellular Carcinoma | Leukemia | Liver Cancer | Lymphoma | Research | Stem Cell Therapy | Stem Cells | Study