Physiological and Pathological Functions of Cl- Channels in Chondrocytes.

Physiological and Pathological Functions of Cl- Channels in Chondrocytes. Biol Pharm Bull. 2018;41(8):1145-1151 Authors: Yamamura H, Suzuki Y, Imaizumi Y Abstract Articular chondrocytes are embedded in the cartilage of diarthrodial joints and responsible for the synthesis and secretion of extracellular matrix. The extracellular matrix mainly contains collagens and proteoglycans, and covers the articular cartilage to protect from mechanical and biochemical stresses. In mammalian chondrocytes, various types of ion channels have been identified: e.g., voltage-dependent K+ channels, Ca2+-activated K+ channels, ATP-sensitive K+ channels, two-pore domain K+ channels, voltage-dependent Ca2+ channels, store-operated Ca2+ channels, epithelial Na+ channels, acid-sensing ion channels, transient receptor potential channels, and mechanosensitive channels. These channels play important roles for the regulation of resting membrane potential, Ca2+ signaling, pH sensing, mechanotransduction, and cell proliferation in articular chondrocytes. In addition to these cation channels, Cl- channels are known to be expressed in mammalian chondrocytes: e.g., voltage-dependent Cl- channels, cystic fibrosis transmembrane conductance regulator channels, swelling-activated Cl- channels, and Ca2+-activated Cl- channels. Although these chondrocyte Cl- channels are thought to contribute to the regulation of resting membrane potential, Ca2+ signaling, cell volume, cel...
Source: Biological and Pharmaceutical Bulletin - Category: Drugs & Pharmacology Authors: Tags: Biol Pharm Bull Source Type: research