Increased energy expenditure, lipolysis, and hyperinsulinemia confer resistance to central obesity and type 2 diabetes in mice lacking alpha2A-adrenoceptors

The α2A-adrenoceptors (ARs) are Gi-coupled receptors, which prejunctionally inhibit the release of norepinephrine (NE) and epinephrine (Epi), and postjunctionally insulin secretion and lipolysis. We have earlier shown that α2A-/- mice display sympathetic hyperactivity, hyperinsulinemia and improved gl ucose tolerance. Here we employed α2A-/- mice and placed the mice on a high-fat diet (HFD) to test the hypothesis that lack of α2A-ARs protects from diet-induced obesity (DIO) and type 2 diabetes (T2D). In addition, high caloric diet was combined with running wheel exercise to test the interaction of diet and exercise. HFD was obesogenic in both genotypes, but α2A-/- mice accumulated less visceral fat than their WT controls, were protected from T2D, and their insulin secretion was unaltered by the diet. Lack of α2A-ARs associated with increased sympatho-adrenal tone, which resulted in incr eased energy expenditure and fat oxidation rate potentiated by HFD. Fittingly, α2A-/- mice displayed enhanced lipolytic responses to Epi, and increased fecal lipids suggesting altered fat mobilization and absorption. Subcutaneous white fat appeared to be thermogenically more active (measured as Ucp 1 mRNA expression) in α2A-/- mice, and brown fat showed an increased response to norepinephrine. Exercise was effective in reducing total body adiposity and increasing lean mass in both genotypes, but there was a significant diet-genotype interaction, as even modestly increased physical acti...
Source: Neuroendocrinology - Category: Endocrinology Source Type: research