Exploring early human brain development with structural and physiological neuroimaging

Publication date: Available online 21 July 2018Source: NeuroImageAuthor(s): Lana Vasung, Esra Abaci Turk, Silvina L. Ferradal, Jason Sutin, Jeffrey N. Stout, Banu Ahtam, Pei-Yi Lin, P. Ellen GrantAbstractEarly brain development, from embryonic period to infancy, is characterized by rapid structural and functional changes. These changes can be studied using structural and physiological neuroimaging methods. In order to optimally acquire and accurately interpret this data, concepts from adult neuroimaging cannot be directly transferred. Instead, one must have a basic understanding of fetal and neonatal structural and physiological brain development, and understand important modulators of this process. Here, we first review the major developmental milestones of transient cerebral structures and structural connectivity (axonal connectivity) followed by a summary of the contributions from ex vivo and in vivo MRI. Next, we discuss the basic biology of neuronal circuitry development (synaptic connectivity, i.e. ensemble of direct chemical and electrical connections between neurons), physiology of neurovascular coupling, baseline metabolic needs of the fetus and the infant, and functional connectivity (defined as statistical dependence of low-frequency spontaneous fluctuations seen with functional magnetic resonance imaging (fMRI)). The complementary roles of magnetic resonance imaging (MRI), electroencephalography (EEG), magnetoencephalography (MEG), and near-infrared spectroscopy (...
Source: NeuroImage - Category: Neuroscience Source Type: research