Optimized synthesis of ambient pressure dried thermal insulating silica aerogel powder from non-ion exchanged water glass

Publication date: 1 November 2018Source: Journal of Non-Crystalline Solids, Volume 499Author(s): Steve De Pooter, Steven Latré, Frederik Desplentere, David SevenoAbstractSilica aerogels are considered as promising materials for future energy saving buildings, however, their reliability remains questionable as commercially available aerogels can show relatively high standard deviations e.g. 22.2 ± 1.4 mW m−1 K−1. Therefore a synthesis protocol for silica aerogel powder with thermal conductivities having extremely reduced standard deviations was designed, compatible with mass production, i.e. reduced use of solvents and hydrophobization agents. Silica sols were prepared from non-ion exchanged water glass, while a combined solvent exchange, silylation and washing out of sodium ions was carried out using a hexane/trimethylchlorosilane/isopropyl alcohol solution with a molar ratio trimethylchlorosilane/pore water of only 0.11. The hexane amount was reduced 35 times compared to typical processes in literature. The aerogel powder was finally dried at ambient pressure at 150 °C. No notable shrinkage was observed for 8 wt% silica aerogel samples, having a thermal conductivity of 25.4 mW m−1 K−1 with a standard deviation of only 0.1. The 6 wt% silica aerogels had a thermal conductivity of 23.4 mW m−1 K−1 with a standard deviation of 0.3, but had shrunken 36%. By replacing trimethylchlorosilane with hexamethyldisiloxane, aerogels having a therm...
Source: Journal of Non Crystalline Solids - Category: Chemistry Source Type: research
More News: Alcoholism | Sodium