Nitric Oxide Participates in the Brain Ischemic Tolerance Induced by Intermittent Hypobaric Hypoxia in the Hippocampal CA1 Subfield in Rats.

Nitric Oxide Participates in the Brain Ischemic Tolerance Induced by Intermittent Hypobaric Hypoxia in the Hippocampal CA1 Subfield in Rats. Neurochem Res. 2018 Jul 11;: Authors: Huang YJ, Yuan YJ, Liu YX, Zhang MY, Zhang JG, Wang TC, Zhang LN, Hu YY, Li L, Xian XH, Qi J, Zhang M Abstract Previous studies have shown that intermittent hypobaric hypoxia (IH) preconditioning protected neurons survival from brain ischemia. However, the mechanism remains to be elucidated. The present study explored the role of nitric oxide (NO) in the process by measuring the expression of NO synthase (NOS) and NO levels. Male Wistar rats (100) were randomly assigned into four groups: sham group, IH + sham group, ischemia group and IH + ischemia group. Rats for IH preconditioning were exposed to hypobaric hypoxia mimicking 5000 m high-altitude (PB = 404 mmHg, PO2 = 84 mmHg) 6 h/day, once daily for 28 days. Global brain ischemia was established by four-vessel occlusion that has been created by Pulsinelli. Rats were sacrificed at 7th day after the ischemia for neuropathological evaluation by thionin stain. In addition, the expression of neuronal NOS (nNOS), inducible NOS (iNOS), and NO content in the hippocampal CA1 subfield were measured at 2nd day and 7th day after the ischemia. Results revealed that global brain ischemia engendered delayed neuronal death (DND), both nNOS and iNOS expression up-regulated, and NO content increased in th...
Source: Neurochemical Research - Category: Neuroscience Authors: Tags: Neurochem Res Source Type: research