Tumor-associated macrophages promote the metastasis of ovarian carcinoma cells by enhancing CXCL16/CXCR6 expression

This study investigated the underlying mechanism by which C-X-C motif chemokine ligand 16 (CXCL16)/C-X-C motif chemokine receptor 6 (CXCR6) signaling is activated by tumor-associated macrophages and assists in regulating the metastasis of ovarian carcinoma. Specimens of ovarian carcinoma tissue and adjacent tissue were collected from 20 ovarian carcinoma patients. Human THP-1 cells were induced to differentiate into macrophages, which were then co-cultured with SKOV3 cells and low concentrations of tumor necrosis factor-α (TNF-α) to simulate the inflammatory microenvironment of ovarian carcinoma. Additionally, small interfering RNA (siRNA) targeting CXCR6 was transfected into SKOV3 cells; after which, the levels of nuclear factor kappa B p65 (NF-κB p65) protein and phosphorylated PI3K and Akt were measured. The migration and invasion abilities of the SKOV3 cells were also tested. The levels of TNF-α, interluekin-6 (IL-6), NF-κB p65, CXCL16, and CXCR6 expression in the ovarian carcinoma tissues were higher than those in the precancerous tissues. CXCR6 expression was positively correlated with TNF-α, IL-6, and CXCL16 expression. Co-culture of SKOV3 cells with macrophages significantly promoted CXCL16, CXCR6, NF-κB, and p65 expression by the SKOV3 cells, increased their levels of phosphorylated PI3K and Akt, and increased the migration and invasion abilities of SKOV3 cells. Silencing of CXCR6 or blocking the PI3K/Akt signal pathway markedly attenuated the expression of NF...
Source: Pathology Research and Practice - Category: Pathology Source Type: research