Regulation of AMPK-related glycolipid metabolism imbalances redox homeostasis and inhibits anchorage independent growth in human breast cancer cells

In this study, we established an anchorage independent growth model for MDA-MB-231 cells and investigated the changes in metabolism and redox homeostasis. Results showed that during detached-growth, MDA-MB-231 cells tend to generate ATP through fatty acid oxidation (FAO), instead of glycolysis. Amount of glucose was used for pentose phosphate pathway (PPP) to keep redox balance. Moreover, we discovered that a synthesized flavonoid derivative GL-V9, exhibited a potent inhibitory effect on the anchorage independent growth of TNBCs in vitro and anti-metastasis effect in vivo. In terms of the mechanism, GL-V9 could promote the expression and activity of AMPK, leading to the decrease of G6PD and the increase of p-ACC. Thus, the level of PPP was suppressed, whereas FAO was highly enhanced. The reprogram of glycolipid metabolism destroyed the redox balance ultimately and induced cell death. This paper indicated a novel regulating mechanism of redox homeostasis involving with glycolipid metabolism, and provided a potential candidate for the anti-metastatic therapy of TNBCs.
Source: Redox Biology - Category: Biology Source Type: research