Force induced piezoelectric effect of polyvinylidene fluoride and polyvinylidene fluoride-co-trifluoroethylene nanofibrous scaffolds.

This study reports the piezoelectric effect of electrospun polyvinylidene fluoride scaffolds in response to mechanical loading. An impact test machine was used to evaluate the generation of electrical voltage upon application of an impact load. Scaffolds were produced via electrospinning from polyvinylidene fluoride and polyvinylidene fluoride-co-trifluoroethylene with concentrations of 10-20 wt% dissolved in N,N-dimethylformamide (DMF) and acetone (6:4). The structural and thermal properties of scaffolds were analyzed using Fourier Transform Infrared Spectroscopy and Differential Scanning Calorimetry, respectively. The piezoelectric response of the scaffolds was induced using a custom-made manual impact press machine. Impact forces between 0.4 and 14 N were applied. Fourier Transform Infrared Spectroscopy and Differential Scanning Calorimetry results demonstrated the piezoelectric effect of the electrospun polyvinylidene fluoride and polyvinylidene fluoride-co-trifluoroethylene scaffolds. All the scaffolds exhibited a piezoelectric polar beta-phase formation. Their thermal enthalpies were higher than the value of the initial materials and exhibited a better tendency of crystallization. The electrospun scaffolds exhibited piezoelectric responses in form of voltage by applying impact load. Polyvinylidene fluoride-co-trifluoroethylene scaffolds showed higher values in the range of 6-30 V as compared to pure polyvinylidene fluoride. Here, the mechanically induced electrica...
Source: The International Journal of Artificial Organs - Category: Transplant Surgery Authors: Tags: Int J Artif Organs Source Type: research