SWAT model uncertainty analysis, calibration and validation for runoff simulation in the Luvuvhu River catchment, South Africa

Publication date: June 2018Source: Physics and Chemistry of the Earth, Parts A/B/C, Volume 105Author(s): M.P. Thavhana, M.J. Savage, M.E. MoeletsiAbstractThe soil and water assessment tool (SWAT) was calibrated for the Luvuvhu River catchment, South Africa in order to simulate runoff. The model was executed through QSWAT which is an interface between SWAT and QGIS. Data from four weather stations and four weir stations evenly distributed over the catchment were used. The model was run for a 33-year period of 1983–2015. Sensitivity analysis, calibration and validation were conducted using the sequential uncertainty fitting (SUFI-2) algorithm through its interface with SWAT calibration and uncertainty procedure (SWAT-CUP). The calibration process was conducted for the period 1986 to 2005 while the validation process was from 2006 to 2015. Six model efficiency measures were used, namely: coefficient of determination (R2), Nash–Sutcliffe efficiency (NSE) index, root mean square error (RMSE)-observations standard deviation ratio (RSR), percent bias (PBIAS), probability (P)-factor and correlation coefficient (R)-factor were used. Initial results indicated an over-estimation of low flows with regression slope of less than 0.7. Twelve model parameters were applied for sensitivity analysis with four (ALPHA_BF, CN2, GW_DELAY and SOL_K) found to be more distinguishable and sensitive to streamflow (p < 0.05). The SUFI-2 algorithm through the interface with the SWAT-CUP was ca...
Source: Physics and Chemistry of the Earth, Parts ABC - Category: Science Source Type: research