Mitochondrial SIRT3 and neurodegenerative brain disorders

Publication date: Available online 9 November 2017Source: Journal of Chemical NeuroanatomyAuthor(s): Anamika, Archita Khanna, Papia Acharjee, Arup Acharjee, Surendra Kumar TrigunAbstractSirtuins are highly conserved NAD+ dependent class III histone deacetylases and catalyze deacetylation and ADP ribosylation of a number of non-histone proteins. Since, they require NAD+ for their activity, the cellular level of Sirtuins represents redox status of the cells and thereby serves as bona fide metabolic stress sensors. Out of seven homologues of Sirtuins identified in mammals, SIRT3, 4 & 5 have been found to be localized and active in mitochondria. During recent past, clusters of protein substrates for SIRT3 have been identified in mitochondria and thereby advocating SIRT3 as the main mitochondrial Sirtuin which could be involved in protecting stress induced mitochondrial integrity and energy metabolism. As mitochondrial dysfunction underlies the pathogenesis of almost all neurodegenerative diseases, a role of SIRT3 becomes an arguable speculation in such brain disorders. Some recent findings demonstrate that SIRT3 over expression could prevent neuronal derangements in certain in vivo and in vitro models of aging and neurodegenerative brain disorders like; Alzheimer’s disease, Huntington’s disease, stroke etc. Similarly, loss of SIRT3 has been found to accelerate neurodegeneration in the brain challenged with excitotoxicity. Therefore, it is argued that SIRT3 could be a relevant...
Source: Journal of Chemical Neuroanatomy - Category: Neuroscience Source Type: research