Cyclic Stretching Exacerbates Tendinitis by Enhancing NLRP3 Inflammasome Activity via F-Actin Depolymerization

AbstractModern molecular techniques have highlighted the presence of inflammation throughout the spectrum of tendinopathy. Previous studies have suggested that excessive inflammation in the tendon is a major factor leading to poor clinical treatment. Furthermore, the NLRP3 inflammasome, as a new term, is closely associated with the pathogenesis of many diseases. In the present study, we examined whether the NLRP3 inflammasome contributes to the development of tendinitis and whether cyclic stretching plays a prominent role in inflammation in the tendon. In the present study, we showed that hydrogen peroxide (H2O2) remarkably enhances the expression and release of IL-1 β, TNF-α, and IL-6. The maturation of IL-1β, induced by H2O2, depends on the activation of the NLRP3 inflammasome. Cyclic stretching enhances the maturation of IL-1 βvia promoting H2O2-induced NLRP3 inflammasome activation in tenocytes. Furthermore, we also found that the depolymerization of filamentous actin (F-actin) was required for cyclic stretching-enhanced NLRP3 inflammasome activation. The present study suggests that NLRP3 inflammasome plays an important regulatory role in the pathogenesis of tendinitis. Disruption of the cytoskeleton by cyclic stretching exerts a proinflammatory effectvia further activating the NLRP3/IL-1 β pathway and hence contributes to tendinitis. These results may provide theoretical support for a new treatment strategy for preventing excessive inflammation in the tendon.
Source: Inflammation - Category: Allergy & Immunology Source Type: research
More News: Study