Telmisartan generates ROS-dependent upregulation of death receptor 5 to sensitize TRAIL in lung cancer via inhibition of autophagy flux.

In this study, we evaluated telmisartan as a novel TRAIL-DR5-targeting agent with the aim of rendering TRAIL-based cancer therapies more active. Herein, we demonstrated that telmisartan could sensitize TRAIL and enhance NSCLC tumor cell death. The molecular mechanism includes the blocking of AMPK phosphorylation causes inhibition of autophagy flux by telmisartan resulting in ROS generation leading to death receptor (DR5) upregulation and subsequent activation of the caspase cascade by TRAIL treatment. Furthermore, using chloroquine and siATG5 significantly enhances ROS production and application of the ROS scavenger N-acetyl-cysteine (NAC) rescues the cells undergoing apoptosis by abrogating the expression of DR5 and finally the caspase cascade. Additionally, NAC treatment also maintains autophagy flux and makes the cells unresponsive to TRAIL. In summary, telmisartan in combination with TRAIL exhibits enhanced cytotoxic capacity toward lung cancer cells, thereby providing the potential for effective and novel therapeutic approaches to treat lung cancer. PMID: 29929000 [PubMed - as supplied by publisher]
Source: The International Journal of Biochemistry and Cell Biology - Category: Biochemistry Authors: Tags: Int J Biochem Cell Biol Source Type: research