Correlation between S100A11 and the TGF- β1/SMAD4 pathway and its effects on the proliferation and apoptosis of pancreatic cancer cell line PANC-1.

Correlation between S100A11 and the TGF-β1/SMAD4 pathway and its effects on the proliferation and apoptosis of pancreatic cancer cell line PANC-1. Mol Cell Biochem. 2018 Jun 19;: Authors: Ji YF, Li T, Jiang F, Ni WK, Guan CQ, Liu ZX, Lu CH, Ni RZ, Wu W, Xiao MB Abstract S100A11 as a S100 protein family member has been documented to play dual-direction regulation over cancer cell proliferation. We explored the role of S100A11 in the proliferation and apoptosis of pancreatic cancer cell line PANC-1 and the potential mechanisms involving the TGF-β1/SMAD4/p21 pathway. S100A11 and TGF-β1 protein expressions in 30 paraffin-embedded specimens were evaluated by immunohistochemistry. S100A11 and TGF-β1 expression in PANC-1 cell line was suppressed using small interfering RNA (siRNA), respectively. Subsequently, pancreatic cancer cell apoptosis was measured by Cell Counting Kit-8 and flow cytometry, and S100A11 and TGF-β1/SMAD4/p21 pathway proteins and genes were detected with Western blotting and quantitative polymerase chain reaction (qPCR). S100A11 cytoplasmic/nuclear protein translocation was examined using NE-PER® cytoplasm/nuclear protein extraction in cells interfered with TGF-β1 siRNA. Our results showed that S100A11 expression was positively correlated with TGF-β1 expression in pancreatic cancerous tissue. Silencing TGF-β1 down-regulated intracellular P21WAF1 expression by 90%, blocked S100A11 from cytoplasm entering nucleus,...
Source: Molecular and Cellular Biochemistry - Category: Biochemistry Authors: Tags: Mol Cell Biochem Source Type: research