Quantitative susceptibility mapping using deep neural network: QSMnet

Publication date: 1 October 2018 Source:NeuroImage, Volume 179 Author(s): Jaeyeon Yoon, Enhao Gong, Itthi Chatnuntawech, Berkin Bilgic, Jingu Lee, Woojin Jung, Jingyu Ko, Hosan Jung, Kawin Setsompop, Greg Zaharchuk, Eung Yeop Kim, John Pauly, Jongho Lee Deep neural networks have demonstrated promising potential for the field of medical image reconstruction, successfully generating high quality images for CT, PET and MRI. In this work, an MRI reconstruction algorithm, which is referred to as quantitative susceptibility mapping (QSM), has been developed using a deep neural network in order to perform dipole deconvolution, which restores magnetic susceptibility source from an MRI field map. Previous approaches of QSM require multiple orientation data (e.g. Calculation of Susceptibility through Multiple Orientation Sampling or COSMOS) or regularization terms (e.g. Truncated K-space Division or TKD; Morphology Enabled Dipole Inversion or MEDI) to solve an ill-conditioned dipole deconvolution problem. Unfortunately, they either entail challenges in data acquisition (i.e. long scan time and multiple head orientations) or suffer from image artifacts. To overcome these shortcomings, a deep neural network, which is referred to as QSMnet, is constructed to generate a high quality susceptibility source map from single orientation data. The network has a modified U-net structure and is trained using COSMOS QSM maps, which are considered as gold standard. Five head orientati...
Source: NeuroImage - Category: Neuroscience Source Type: research