cAMP/PKA/EGR1 signaling mediates the molecular mechanism of ethanol-induced inhibition of placental 11 β-HSD2 expression.

This study aimed to investigate the molecular mechanism of the prenatal ethanol exposure (PEE)-induced inhibition of placental 11β-HSD2 expression. Pregnant Wistar rats were intragastrically administered ethanol (4 g/kg d) from gestational days 9 to 20. The levels of maternal and fetal serum corticosterone and placental 11β-HSD2-related gene expression were analyzed. Furthermore, we investigated the mechanism of reduced placental 11β-HSD2 expression induced by ethanol treatment (15-60 mM) in HTR-8/SVneo cells. In vivo, PEE decreased fetal body weights and increased maternal and fetal serum corticosterone and early growth response factor 1 (EGR1) expression levels. Moreover, histone modification changes (decreased acetylation and increased di-methylation of H3K9) to the HSD11B2 promoter and lower 11β-HSD2 expression levels were observed. In vitro, ethanol decreased cAMP/PKA signaling and 11β-HSD2 expression and increased EGR1 expression in a concentration-dependent manner. A cAMP agonist and EGR1 siRNA reversed the ethanol-induced inhibition of 11β-HSD2 expression. Together, PEE reduced placental 11β-HSD2 expression, and the underlying mechanism is associated with ethanol-induced histone modification changes to the HSD11B2 promoter through the cAMP/PKA/EGR1 pathway. PMID: 29802914 [PubMed - as supplied by publisher]
Source: Toxicology and Applied Pharmacology - Category: Toxicology Authors: Tags: Toxicol Appl Pharmacol Source Type: research