NLRP3 Inflammasome Is Involved in Q-VD-OPH Induced Necroptosis Following Cerebral Ischemia-Reperfusion Injury.

In this study, we determined the optimal dose of Q-VD-OPH, which induces necroptosis in rats by the middle cerebral artery occlusion, followed by reperfusion. Furthermore, we report that the NLRP3 inflammasome is involved in necroptosis, with levels of NLRP3 inflammasome proteins as well as inflammatory cytokines, such as IL-1β, being elevated. We also demonstrated that NLRP3 was not only expressed in microglia and vascular endothelial cell, but also in neurons when necroptosis is induced with Q-VD-OPH. Inhibition of NLRP3 by glyburide strongly suppressed the expression of NLRP3 inflammasome proteins and IL-1β, and markedly reduced brain tissue damage. Our findings provide evidence that pretreatment with Q-VD-OPH suppresses apoptosis and induces necroptosis in the cerebral ischemia-reperfusion model. We also identified that the NLRP3 inflammasome plays an important role in neuronal necroptosis, and that NLRP3 inflammasome deficiency reduces brain tissue damage after cerebral ischemia-reperfusion injury in rats. PMID: 29802529 [PubMed - as supplied by publisher]
Source: Neurochemical Research - Category: Neuroscience Authors: Tags: Neurochem Res Source Type: research
More News: Brain | Glyburide | Neurology | Study