Quantitative Evaluation of Annuloplasty on Mitral Valve Chordae Tendineae Forces to Supplement Surgical Planning Model Development

Abstract Computational models of the heart’s mitral valve (MV) exhibit potential for preoperative surgical planning in ischemic mitral regurgitation (IMR). However challenges exist in defining boundary conditions to accurately model the function and response of the chordae tendineae to both IMR and surgical annuloplasty repair. Towards this goal, a ground-truth data set was generated by quantifying the isolated effects of IMR and mitral annuloplasty on leaflet coaptation, regurgitation, and tethering forces of the anterior strut and posterior intermediary chordae tendineae. MVs were excised from ovine hearts (N = 15) and mounted in a pulsatile heart simulator which has been demonstrated to mimic the systolic MV geometry and coaptation of healthy and chronic IMR sheep. Strut and intermediary chordae from both MV leaflets (N = 4) were instrumented with force transducers. Tested conditions included a healthy control, IMR, oversized annuloplasty, true-sized annuloplasty, and undersized mitral annuloplasty. A2-P2 leaflet coaptation length, regurgitation, and chordal tethering were quantified and statistically compared across experimental conditions. MR was successfully simulated with significant increases in MR, tethering forces for each of the chordae, and decrease in leaflet coaptation (p < .05). Compared to the IMR condition, increasing levels of downsized annuloplasty significantly reduced regurgitation, increased coaptation, reduced posteromedia...
Source: Cardiovascular Engineering and Technology - Category: Cardiology Source Type: research