A landscape genetic analysis of swamp rabbits (Sylvilagus aquaticus) suggests forest canopy cover enhances gene flow in an agricultural matrix

Canadian Journal of Zoology, e-First Articles. Habitat loss and fragmentation pose a continued and immediate threat to wildlife and create a persistent need for ecological information at the landscape scale to guide conservation efforts. Landscape features influence population connectivity for many species and genetic analyses can be employed to determine which of these features are most important. Because population connectivity through dispersal is important to the persistence of swamp rabbits (Sylvilagus aquaticus (Bachman, 1837)) at the northern edge of their range, we used a landscape genetic approach to relate gene flow to landscape features that may impact dispersal success. We tested resistance values for attributes of land cover, watercourse corridors, canopy cover, and roads and used causal modeling and redundancy analysis to relate these representations of landscapes to genetic distance for swamp rabbits in southern Illinois, USA. Models that included canopy cover had the strongest correlations with genetic distance and were supported by our methods whereas other models were not. We concluded that high tree canopy cover enhances gene flow and landscape connectivity for swamp rabbits in southern Illinois. Our study provides important empirical evidence that landscape variables may impact the habitat connectivity of swamp rabbits. Preserving dispersal routes for swamp rabbits should focus on improving canopy cover, in both bottomland and upland, to connect suitable h...
Source: Canadian Journal of Zoology - Category: Zoology Authors: Source Type: research