Effect of vanadium released from micro-arc oxidized porous Ti6Al4V on biocompatibility in orthopedic applications

In this study, the surface features and chemical compositions were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS) and X-ray photoelectron spectroscopy (XPS). The ion release of Ti, Al and V was quantitatively measured by inductively-coupled plasma mass spectroscopy (ICP-MS) after immersion in Hanks’ solution. To probe the mechanism of V release, the corrosion resistance of porous Ti6Al4V before and after the MAO process was evaluated by electrochemical tests. Thereafter, the effects on the biocompatibility were tested in vitro by cell culture assays and then in vivo by subcutaneous embedment. Finally, the bone tissue response and in vivo release profile of V ions were characterized by intra-osseous implantation. Therefore, this study suggests that the effect of V released from MAO-treated porous Ti6Al4V on biocompatibility and application safety is small and preventable. Graphical abstract
Source: Colloids and Surfaces B: Biointerfaces - Category: Biochemistry Source Type: research