In vitro activity characterization of the tomato SnRK1 complex proteins

In this study, the phylogenetic placement and in vitro kinase activity of a second tomato SnRK1 α-subunit, SlSnRK1.2, were characterized. Interestingly, in the phylogenetic analysis of SnRK1 sequences from monocots and dicots SlSnRK1.2 clusters only with other Solanaceae SnRK1.2 sequences, suggesting possible functional divergence of these kinases from other SnRK1 kinases. For analysis of kinase activity, SlSnRK1.2 was able to autophosphorylate, phosphorylate the complex β-subunits, and phosphorylate the SnRK1 AMARA peptide substrate, all with drastically lower overall kinase activity compared to SlSnRK1.1. Activation by the upstream kinase SlSnAK was able to increase the kinase activity of both SlSnRK1.1 and SlSnRK1.2, although the increase is less dramatic for SlSnRK1.2. The highest kinase activity on the AMARA peptide for SlSnRK1.2 was seen when reconstituting the complex in vitro with SlSip1 as the β-subunit. In comparison, SlSnRK1.1 showed the lowest kinase activity on the AMARA peptide when SlSip1 was used. These studies suggest the SlSnRK1.2 phylogenetic divergence and lower SlSnRK1.2 kinase activity compared to SlSnRK1.1 may be indicative of different in vivo roles for each kinase.
Source: Biochimica et Biophysica Acta (BBA) Proteins and Proteomics - Category: Biochemistry Source Type: research
More News: Biochemistry | Study | Tomatoes