Retromer Dysfunction and Neurodegenerative Disease.

Retromer Dysfunction and Neurodegenerative Disease. Curr Genomics. 2018 May;19(4):279-288 Authors: Reitz C Abstract In recent years, genomic, animal and cell biology studies have implicated deficiencies in retromer-mediated trafficking of proteins in an increasing number of neurodegenerative diseases including Alzheimer's Disease (AD), Parkinson's Disease (PD) and Frontotemporal Lobar Degener-ation (FTLD). The retromer complex, which is highly conserved across all eukaryotes, regulates the sorting of transmembrane proteins out of endo-somes to the cell surface or to the trans-Golgi network. Within retromer, cargo selection and binding are performed by a trimer of the Vps26, Vps29 and Vps35 proteins, named the "Cargo-Selective Complex (CSC)". Sorting of cargo into tubules for distribution to the trans-Golgi network or the cell sur-face is achieved through the dimeric sorting nexin (SNX) component of retromer and accessory proteins such as the WASH complex which medi-ates the formation of discrete endosomal tubules enabling the sorting of cargo into distinct pathways through production of filamentous actin patch-es. In the present article, we review the molecular structure and function of the retromer and summarize the evidence linking retromer dysfunction to neurodegenerative disease. PMID: 29755290 [PubMed]
Source: Current Genomics - Category: Genetics & Stem Cells Tags: Curr Genomics Source Type: research

Related Links:

CONCLUSIONS: The varied pharmacologic mechanisms of NBP involve many complex molecular mechanisms; however, there many unknown pharmacologic effects await further study. PMID: 31205106 [PubMed - in process]
Source: Chinese Medical Journal - Category: General Medicine Authors: Tags: Chin Med J (Engl) Source Type: research
This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found athttps://cos.io/our-services/open-science-badges/Open Science: This manuscript was awarded with the Open Materials BadgeFor more information see:https://cos.io/our-services/open-science-badges/
Source: Journal of Neurochemistry - Category: Neuroscience Authors: Tags: Original Article Source Type: research
In this study, analysis of antioxidant defense was performed on the blood samples from 184 "aged" individuals aged 65-90+ years, and compared to the blood samples of 37 individuals just about at the beginning of aging, aged 55-59 years. Statistically significant decreases of Zn,Cu-superoxide dismutase (SOD-1), catalase (CAT), and glutathione peroxidase (GSH-Px) activities were observed in elderly people in comparison with the control group. Moreover, an inverse correlation between the activities of SOD-1, CAT, and GSH-Px and the age of the examined persons was found. No age-related changes in glutathione reductas...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
uhsin Konuk Tao Sun Neurodegenerative and neuropsychiatric diseases are characterized by the structural and functional abnormalities of neurons in certain regions of the brain. These abnormalities, which can result in progressive neuronal degeneration and functional disability, are incurable to date. Although comprehensive efforts have been made to figure out effective therapies against these diseases, partial success has been achieved and complete functional recovery is still not a reality. At present, plants and plant-derived compounds are getting more attention because of a plethora of pharmacological properties, ...
Source: Molecules - Category: Chemistry Authors: Tags: Review Source Type: research
Baranger K Abstract As life expectancy increases worldwide, age-related neurodegenerative diseases will increase in parallel. The lack of effective treatment strategies may soon lead to an unprecedented health, social and economic crisis. Any attempt to halt the progression of these diseases requires a thorough knowledge of the pathophysiological mechanisms involved to facilitate the identification of new targets and the application of innovative therapeutic strategies. The metzincin superfamily of metalloproteinases includes matrix metalloproteinases (MMP), a disintegrin and metalloproteinase (ADA...
Source: Cellular and Molecular Life Sciences : CMLS - Category: Cytology Authors: Tags: Cell Mol Life Sci Source Type: research
Abstract Brain iron is a crucial participant and regulator of normal physiological activity. However, excess iron is involved in the formation of free radicals, and has been associated with oxidative damage to neuronal and other brain cells. Abnormally high brain iron levels have been observed in various neurodegenerative diseases, including neurodegeneration with brain iron accumulation, Alzheimer's disease, Parkinson's disease and Huntington's disease. However, the key question of why iron levels increase in the relevant regions of the brain remains to be answered. A full understanding of the homeostatic mechani...
Source: Biological Reviews of the Cambridge Philosophical Society - Category: Biology Authors: Tags: Biol Rev Camb Philos Soc Source Type: research
Of late, it is becoming clear that the dysfunction of immune cells of the central nervous system, such as microglia, is an important part of neurodegeneration. Growing degrees of cellular senescence in these cell populations, leading to inflammatory signaling, appears to be significant in the progression of Alzheimer's disease, for example. There are many distinct types of supporting cell in the brain, however. This short open access review paper discusses the evidence for dysfunction of the immune cells known as mast cells to be relevant to the progression of chronic inflammation and neurodegeneration in the aging brain. ...
Source: Fight Aging! - Category: Research Authors: Tags: Daily News Source Type: blogs
AbstractCurcumin is widely consumed in Asia either as turmeric directly or as one of the culinary ingredients in food recipes. The benefits of curcumin in different organ systems have been reported extensively in several neurological diseases and cancer. Curcumin has got its global recognition because of its strong antioxidant, anti ‐inflammatory, anti‐cancer, and antimicrobial activities. Additionally, it is used in diabetes and arthritis as well as in hepatic, renal, and cardiovascular diseases. Recently, there is growing attention on usage of curcumin to prevent or delay the onset of neurodegenerative diseases. This...
Source: BioFactors - Category: Biochemistry Authors: Tags: REVIEW ARTICLE Source Type: research
Abstract BACKGROUND: Neuroinflammation is a typical feature of many neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. Microglia, the resident immune cells of the brain, readily become activated in response to infection or injury. Uncontrolled and overactivated microglia can release pro-inflammatory and cytotoxic factors and are the major culprit in neuroinflammation. Hence, research into novel neuroinflammatory inhibitors is of paramount importance for the treatment of neurodegenerative diseases. Bacterial lipopolysaccharide, widely used in studies of brain inflammation, initiates ...
Source: Mini Reviews in Medicinal Chemistry - Category: Chemistry Authors: Tags: Mini Rev Med Chem Source Type: research
Abstract The therapeutic application of human umbilical cord blood cells has been an area of great interest for at least the last 25 years. Currently, cord blood cells are approved for reconstitution of the bone marrow following myeloablation in both young and old patients with myeloid malignancies and other blood cancers. Translational studies investigating alternative uses of cord blood have also shown that these cells not only stimulate neurogenesis in the aged brain but are also potentially therapeutic in the treatment of adult neurodegenerative disorders including amyotrophic lateral sclerosis, Alzheimer's di...
Source: Cell Transplantation - Category: Cytology Authors: Tags: Cell Transplant Source Type: research
More News: Alzheimer's | Biology | Brain | Cytology | Genetics | Molecular Biology | Neurology | Parkinson's Disease | Study