Biomimetic magnetoelectric nanocrystals synthesized by polymerization of heme as advanced nanomaterials for biosensing application

In this study, the heme was biologically synthesized and polymerized by Corynebacterium glutamicum and final polymer was applied as a biomimetic conductive biopolymer. The biosynthesized monomer heme by metabolic engineered strain was enzymatically polymerized by an enzyme complex containing two different heme polymerization proteins. Moreover, the electrical conductivities of hemozoin prepared by heme polymerase enzyme complexes were investigated and compared with those of the heme monomer. Because of the synergetic effects of polymerized heme, synthesized artificial nanocrystals exhibited a greater conductive property than a heme monomer. As a result of their surpassing properties, developed novel magnetoelectric nanocrystals could be motivated as smaller scale electronic devices with advanced properties. Thus, these results will open a brand new field in the frontier of the heme detoxification mechanism of the malaria parasite and its biomimetic application as advanced nanomaterials for biological and biomedical sensing. Graphical abstract
Source: Biosensors and Bioelectronics - Category: Biotechnology Source Type: research