TRPV4 inhibition prevents paclitaxel-induced neurotoxicity in preclinical models.

TRPV4 inhibition prevents paclitaxel-induced neurotoxicity in preclinical models. Exp Neurol. 2018 Apr 28;: Authors: Boehmerle W, Huehnchen P, Lee SLL, Harms C, Endres M Abstract Paclitaxel is a cytotoxic drug which frequently causes sensory peripheral neuropathy in patients. Increasing evidence suggests that altered intracellular calcium (Ca2+) signals play an important role in the pathogenesis of this condition. In the present study, we examined the interplay between Ca2+ release channels in the endoplasmic reticulum (ER) and Ca2+ permeable channels in the plasma membrane in the context of paclitaxel mediated neurotoxicity. We observed that in small to medium size dorsal root ganglia neurons (DRGN) the inositol-trisphosphate receptor (InsP3R) type 1 was often concentrated in the periphery of cells, which is in contrast to homogenous ER distribution. G protein-coupled designer receptors were used to further elucidate phosphoinositide mediated Ca2+ signaling: This approach showed strong InsP3 mediated Ca2+ signals close to the plasma membrane, which can be amplified by Ca2+ entry through TRPV4 channels. In addition, our results support a physical interaction and partial colocalization of InsP3R1 and TRPV4 channels. In the context of paclitaxel-induced neurotoxicity, blocking Ca2+ influx through TRPV4 channels reduced cell death in cultured DRGN. Pretreatment of mice with the pharmacological TRPV4 inhibitor HC067047 prior to paclitaxe...
Source: Experimental Neurology - Category: Neurology Authors: Tags: Exp Neurol Source Type: research