Morphology-oriented epigenetic research

AbstractCytosine methylation plays a major role in the regulation of sequential and tissue-specific expression of genes. De novo aberrant DNA methylation and demethylation are also crucial processes in tumorigenesis and tumor progression. The mechanisms of how and when such aberrant methylation and demethylation occur in tumor cells are still obscure, however. To evaluate subtle epigenetic alteration among minor subclonal populations, morphology-oriented epigenetic analysis is requisite, especially where heterogeneity and flexibility are as notable as in the process of cancer progression and cellular differentiation at critical stages. Therefore, establishment of reliable morphology-oriented epigenetic studies has become increasingly important in not only the experimental but also the diagnostic field. By selecting a subset of cells based on characteristic morphological features disclosed by microdissection or in situ hybridization, we discovered how methylation at certain CpG sites outside of CpG islands would play a crucial epigenetic role in the versatility and flexibility of gene expression during cancer progression. In this review, we first introduce technical aspects of two morphology-oriented epigenetic studies: (1) histoendonuclease-linked detection of methylated sites of DNA (HELMET), and (2) padlock probe and rolling circle amplification (RCA) for in situ identification of methylated cytosine in a sequence-dependent manner. We then present our observation of a novel...
Source: Histochemistry and Cell Biology - Category: Biomedical Science Source Type: research