miR-27a protects human mitral valve interstitial cell from TNF- α-induced inflammatory injury via up-regulation of NELL-1.

This study aimed to investigate the functional impacts of miR-27a on TNF-α-induced inflammatory injury in human mitral valve interstitial cells (hMVICs). hMVICs were subjected to 40 ng/mL TNF-α for 48 h, before which the expressions of miR-27a and NELL-1 in hMVICs were altered by stable transfection. Trypan blue staining, BrdU incorporation assay, flow cytometry detection, ELISA, and western blot assay were performed to detect cell proliferation, apoptosis, and the release of proinflammatory cytokines. We found that miR-27a was lowly expressed in response to TNF-α exposure in hMVICs. Overexpression of miR-27a rescued hMVICs from TNF-α-induced inflammatory injury, as cell viability and BrdU incorporation were increased, apoptotic cell rate was decreased, Bcl-2 was up-regulated, Bax and cleaved caspase-3/9 were down-regulated, and the release of IL-1β, IL-6, and MMP-9 were reduced. NELL-1 was positively regulated by miR-27a, and NELL-1 up-regulation exhibited protective functions during TNF-α-induced cell damage. Furthermore, miR-27a blocked JNK and Wnt/β-catenin signaling pathways, and the blockage was abolished when NELL-1 was silenced. This study demonstrated that miR-27a overexpression protected hMVICs from TNF-α-induced cell damage, which might be via up-regulation of NELL-1 and thus modulation of JNK and Wnt/β-catenin signaling pathways. PMID: 29694513 [PubMed - in process]
Source: Brazilian Journal of Medical and Biological Research - Category: Research Tags: Braz J Med Biol Res Source Type: research