A novel heme oxygenase-1 splice variant, 14kDa HO-1, promotes cell proliferation and increases relative telomere length.

A novel heme oxygenase-1 splice variant, 14kDa HO-1, promotes cell proliferation and increases relative telomere length. Biochem Biophys Res Commun. 2018 Apr 13;: Authors: Bian C, Zhong M, Nisar MF, Wu Y, Ouyang M, Bartsch JW, Zhong JL Abstract Alternative splicing is a routine phenomenon which greatly increases the diversity of proteins in eukaryotic cells. In humans, most multi-exonic genes are alternatively spliced and their splice variants confer distinct functions. Heme oxygenase-1 (HO-1, 32 kDa) is an inducible stress responsive protein, which possesses multiple functions in many cellular processes. In the current study, we identified a novel alternative splice isoform of 14 kDa HO-1 generated through exclusion of exon 3, and it is highly expressed in immortalized cells. In contrast to nuclear accumulation of the full-length 32 kDa HO-1, the novel 14 kDa HO-1 isoform is cytoplasmic retention under ultraviolet (UV) irradiation. Interestingly, the 14 kDa HO-1 is shown to promote cell proliferation and an increase in relative telomere lengths in vivo and in vitro. Thus, we are pioneer to report and confirm the presence of a novel splice form of HO-1 and its distinct role in modulating telomere length and tumor growth. PMID: 29660345 [PubMed - as supplied by publisher]
Source: Biochemical and Biophysical Research communications - Category: Biochemistry Authors: Tags: Biochem Biophys Res Commun Source Type: research
More News: Biochemistry | Genetics | Study