Crystal structure of intraflagellar transport protein 80 reveals a homo-dimer required for ciliogenesis

Oligomeric assemblies of intraflagellar transport (IFT) particles build cilia through sequential recruitment and transport of ciliary cargo proteins within cilia. Here we present the 1.8 Å resolution crystal structure of theChlamydomonas IFT-B protein IFT80, which reveals the architecture of two N-terminal b-propellers followed by an a-helical extension. The N-terminal b-propeller tethers IFT80 to the IFT-B complex via IFT38 whereas the second b-propeller and the C-terminal a-helical extension result in IFT80 homo-dimerization. Using CRISPR/Cas to create biallelicIft80frameshift mutations in IMCD3 mouse cells, we demonstrate that IFT80 is absolutely required for ciliogenesis. Structural mapping and rescue experiments reveal that human disease-causing missense mutations do not cluster within IFT80 and form functional IFT particles. Unlike missense mutant forms of IFT80, deletion of the C-terminal dimerization domain prevented rescue of ciliogenesis. Taken together our results may provide a first insight into higher order IFT complex formation likely required for IFT train formation.
Source: eLife - Category: Biomedical Science Tags: Cell Biology Structural Biology and Molecular Biophysics Source Type: research