Tropomyosin receptor kinase: a novel target in screened neuroendocrine tumors

Tropomyosin receptor kinase (Trk) inhibitors are investigated as a novel targeted therapy in various cancers. We investigated the in vitro effects of the pan-Trk inhibitor GNF-5837 in human neuroendocrine tumor (NET) cells. The human neuroendocrine pancreatic BON1, bronchopulmonary NCI-H727 and ileal GOT1 cell lines were treated with GNF-5837 alone and in combination with everolimus. Cell viability decreased in a time- and dose-dependent manner in GOT1 cells in response to GNF-5837 treatment, while treatment in BON1 and NCI-H727 cells showed no effect on cellular viability. Trk receptor expression determined GNF-5837 sensitivity. GNF-5837 caused downregulation of PI3K-Akt-mTOR signaling, Ras-Raf-MEK-ERK signaling, the cell cycle and increased apoptotic cell death. The combinational treatment of GNF-5837 with everolimus showed a significant enhancement in inhibition of cell viability vs single substance treatments, due to a cooperative PI3K-Akt-mTOR and Ras-Raf-MEK-ERK pathway downregulation, as well as an enhanced cell cycle component downregulation. Immunohistochemical staining for Trk receptors were performed using a tissue microarray containing 107 tumor samples of gastroenteropancreatic NETs. Immunohistochemical staining with TrkA receptor and pan-Trk receptor antibodies revealed a positive staining in pancreatic NETs in 24.2% (8/33) and 33.3% (11/33), respectively. We demonstrated that the pan-Trk inhibitor GNF-5837 has promising anti-tumoral properties in human NET cell...
Source: Endocrine-Related Cancer - Category: Endocrinology Authors: Tags: Research Source Type: research