Modeling and resistant alleles explain the selectivity of antimalarial compound 49c towards apicomplexan aspartyl proteases

Toxoplasma gondii aspartyl protease 3 (TgASP3) phylogenetically clusters with Plasmodium falciparum Plasmepsins IX and X (PfPMIX, PfPMX). These proteases are essential for parasite survival, acting as key maturases for secreted proteins implicated in invasion and egress. A potent antimalarial peptidomimetic inhibitor (49c) originally developed against Plasmepsin II selectively targets TgASP3, PfPMIX, and PfPMX. To unravel the molecular basis for the selectivity of 49c, we constructed homology models of PfPMIX, PfPMX, and TgASP3 that were first validated by identifying the determinants of microneme and rhoptry substrate recognition. The flap and flap-like structures of several reported Plasmepsins are highly flexible and critically modulate the access to the binding cavity. Molecular docking of 49c to TgASP3, PfPMIX, and PfPMX models predicted that the conserved phenylalanine residues in the flap, F344, F291, and F305, respectively, account for the sensitivity toward 49c. Concordantly, phenylalanine mutations in the flap of the three proteases increase twofold to 15-fold the IC50 values of 49c. Compellingly the selection of mutagenized T. gondii resistant strains to 49c reproducibly converted F344 to a cysteine residue.
Source: EMBO Journal - Category: Molecular Biology Authors: Tags: Microbiology, Virology & Host Pathogen Interaction, Post-translational Modifications, Proteolysis & Proteomics, Structural Biology Articles Source Type: research