New compound helps activate cancer-fighting T cells

(University of Connecticut) An international research team led by University of Connecticut chemist Amy Howell has created a new lipid antigen that helps stimulate disease-fighting T cells in the immune system, opening up new paths for the development of better cancer therapy drugs and vaccines.
Source: EurekAlert! - Cancer - Category: Cancer & Oncology Source Type: news

Related Links:

In this study, poly lactic-co-glycolic acid nanoparticles (NPs) were used as DC antigen delivery vehicles in a preclinical model of immunotherapy of gastric cancer. The DCs were generated from peripheral blood monocytes by conventional in vitro differentiation and loaded with either soluble tumor lysate or lysate encapsulated in NPs using a double emulsion/solvent evaporation technique. Morphology of NPs was determined by scanning electron microscopy. Tumor lysate, either in the soluble form or encapsulated in NPs, was loaded into DC and stimulatory capacity was compared using patient-derived autologous CD3+ T cells as res...
Source: Immunological Investigations - Category: Allergy & Immunology Tags: Immunol Invest Source Type: research
Personalized cancer vaccines hold promises for future cancer therapy. Targeting neoantigens is perceived as more beneficial compared to germline, non-mutated antigens. However, it is a practical challenge to identify and vaccinate patients with neoantigens. Here we asked whether two neoantigens are sufficient, and whether the addition of germline antigens would enhance the therapeutic efficacy. We developed and used a personalized cancer nano-vaccine platform based on virus-like particles loaded with toll-like receptor ligands. We generated three sets of multi-target vaccines [MTV] to immunize against the aggressive B16F10...
Source: Frontiers in Immunology - Category: Allergy & Immunology Source Type: research
Abstract Cancer is still a leading cause of death worldwide, while most chemotherapies induce non-selective toxicity and severe systemic side effects. To address these problems, targeted nanoscience is an emerging field that promises to benefit cancer patients. Gold nanoparticles are nowadays in the spotlight due to their many well-established advantages. Gold nanoparticles are easily synthesizable in various shapes and sizes by a continuously developing set of means, including chemical, physical or eco-friendly biological methods. This review presents gold nanoparticles as versatile therapeutic agents playing man...
Source: Current Medicinal Chemistry - Category: Chemistry Authors: Tags: Curr Med Chem Source Type: research
Marjolein Schluck1,2, Roel Hammink1,2, Carl G. Figdor1,2,3, Martijn Verdoes1,3*† and Jorieke Weiden1,2,3*† 1Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands 2Division of Immunotherapy, Oncode Institute, Radboud University Medical Center, Nijmegen, Netherlands 3Institute for Chemical Immunology, Nijmegen, Netherlands Traditional tumor vaccination approaches mostly focus on activating dendritic cells (DCs) by providing them with a source of tumor antigens and/or adjuvants, which in turn activate tumor-reactive T c...
Source: Frontiers in Immunology - Category: Allergy & Immunology Source Type: research
Conclusion MTDH is pro-oncogenic factor playing multifaceted and diverse roles in cancer progression. Its association and central role in regulating signaling pathways such a MAPK, wnt/β-catenin, PI3K/AkT, NF-κβ pathways in various cancers shows that it plays a vital role in metastasis. MTDH contribution to chemo and radiotherapy resistance provides a new direction for the development of anticancer therapeutics. Multiple mechanisms converge to promote expression of MTDH in cancers. Further studies are therefore warranted to determine whether the elevated MTDH expression has prognostic value for development...
Source: Frontiers in Oncology - Category: Cancer & Oncology Source Type: research
Michal Yalon1†, Amos Toren1,2†, Dina Jabarin2, Edna Fadida3, Shlomi Constantini3 and Ruty Mehrian-Shai1* 1Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital and Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel 2The Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel 3Department of Pediatric Neurosurgery, Dana Children's Hospital, Tel-Aviv-Sourasky Medical Center, Tel Aviv, Israel Pediatric brain tumors are the most common solid tumor type and the leading cause of cancer-related death in children. The immune system plays an important r...
Source: Frontiers in Oncology - Category: Cancer & Oncology Source Type: research
Xuequn Xu†, J. N. Rashida Gnanaprakasam†, John Sherman† and Ruoning Wang* Center for Childhood Cancer and Blood Diseases, Hematology/Oncology &BMT, The Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH, United States The adoptive transfer of T cells expressing chimeric antigen receptors (CARs) through genetic engineering is one of the most promising new therapies for treating cancer patients. A robust CAR T cell-mediated anti-tumor response requires the coordination of nutrient and energy supplies with CAR T cell expansion and function. Howe...
Source: Frontiers in Oncology - Category: Cancer & Oncology Source Type: research
Conclusions This review describes how leukocyte-heparanase can be a double-edged sword in tumor progression; it can enhance tumor immune surveillance and tumor cell clearance, but also promote tumor survival and growth. We also discuss the potential of using heparanase in leukocyte therapies against tumors, and the effects of heparanase inhibitors on tumor progression and immunity. We are just beginning to understand the influence of heparanase on a pro/anti-tumor immune response, and there are still many questions to answer. How do the pro/anti-tumorigenic effects of heparanase differ across different cancer types? Does...
Source: Frontiers in Oncology - Category: Cancer & Oncology Source Type: research
Publication date: July 2019Source: Biomedicine &Pharmacotherapy, Volume 115Author(s): Pan Long, Qian Zhang, Mingtao Xue, Guihua Cao, Cui Li, Wei Chen, Fengzhong Jin, Zengshan Li, Rong Li, Xiaoming Wang, Wei GeAbstractVaccines administered orally enable the stimulation of both the mucous membrane and system immune responses. However, tumor vaccines, whose effective elements are antigen protein molecules or gene-encoding antigens, are hardly accustomed to the harsh gastrointestinal environment. Here, we explored an oral nanoecapsulated tumor vaccine complex to evaluate the anti-tumor effect. Tomato lectin (TL) was modifi...
Source: Biomedicine and Pharmacotherapy - Category: Drugs & Pharmacology Source Type: research
Abstract Vaccines administered orally enable the stimulation of both the mucous membrane and system immune responses. However, tumor vaccines, whose effective elements are antigen protein molecules or gene-encoding antigens, are hardly accustomed to the harsh gastrointestinal environment. Here, we explored an oral nanoecapsulated tumor vaccine complex to evaluate the anti-tumor effect. Tomato lectin (TL) was modified on the surface of a nanoemulsion (NE) composed of MAGE1-HSP70/SEA (MHS). C57BL/6 mice were immunized with NE (-), NE (MHS) and TL-NE (MHS) via po. or sc. administration. Additionally, the cellular imm...
Source: Biomedicine and pharmacotherapy = Biomedecine and pharmacotherapie - Category: Drugs & Pharmacology Authors: Tags: Biomed Pharmacother Source Type: research
More News: Cancer | Cancer & Oncology | Cancer Therapy | Cancer Vaccines | Chemistry | Vaccines