Secretome of Differentiated PC12 Cells Restores the Monocrotophos-Induced Damages in Human Mesenchymal Stem Cells and SHSY-5Y Cells: Role of Autophagy and Mitochondrial Dynamics

AbstractA perturbed cellular homeostasis is a key factor associated with xenobiotic exposure resulting in various ailments. The local cellular microenvironment enriched with secretory components aids in cell –cell communication that restores this homeostasis. Deciphering the underlying mechanism behind this restorative potential of secretome could serve as a possible solution to many health hazards. We, therefore, explored the protective efficacy of the secretome of differentiated PC12 cells with emph asis on induction of autophagy and mitochondrial biogenesis. Monocrotophos (MCP), a widely used neurotoxic organophosphate, was used as the test compound at sublethal concentration. The conditioned medium (CM) of differentiated PC12 cells comprising of their secretome restored the cell viability, ox idative stress and apoptotic cell death in MCP-challenged human mesenchymal stem cells and SHSY-5Y, a human neuroblastoma cell line. Delving further to identify the underlying mechanism of this restorative effect we observed a marked increase in the expression of autophagy markers LC3, Beclin-1, Atg 5 and Atg7. Exposure to autophagy inhibitor, 3-methyladenine, led to a reduced expression of these markers with a concomitant increase in the expression of pro-apoptotic caspase-3. Besides that, the increased mitochondrial fission in MCP-exposed cells was balanced with increased fusion in the presen ce of CM facilitated by AMPK/SIRT1/PGC-1α signaling cascade. Mitochondrial dysfunctions...
Source: NeuroMolecular Medicine - Category: Neurology Source Type: research