Bradykinin-potentiating peptide-10c, an argininosuccinate synthetase activator, protects against h2o2-induced oxidative stress in sh-sy5y neuroblastoma cells

Publication date: Available online 29 March 2018 Source:Peptides Author(s): Samyr Machado Querobino, César Augusto João Ribeiro, Carlos Alberto-Silva Bradykinin-potentiating peptides (BPPs – 5a, 7a, 9a, 10c, 11e, and 12b) of Bothrops jararaca (Bj) were described as argininosuccinate synthase (AsS) activators, improving L-arginine availability. Agmatine and polyamines, which are L-arginine metabolism products, have neuroprotective properties. Here, we investigated the neuroprotective effects of low molecular mass fraction from Bj venom (LMMF) and two synthetic BPPs (BPP-10c, <ENWPHPQIPP; BPP-12b, <EWGRPPGPPIPP) in the SH-SY5Y cell line against H2O2-induced oxidative stress. The neuroprotective effects against H2O2-induced were analyzed by reactive oxygen species (ROS – DCFH) production; lipid peroxidation (TBARS); intracellular GSH; AsS, iNOS, and NF-kB expressions; nitrite levels (Griess); mitochondrial membrane potential (TMRM); and antioxidant activity (DPPH). Analysis of variance followed by Tukey’s post hoc test were calculated for statistical comparisons. Pre-treatment with both BPPs significantly reduced cell death induced by H2O2, but BPP-10c showed higher protective capacity than BPP-12b. LMMF pretreatment was unable to prevent the reduction of cell viability caused by H2O2. The neuroprotective mechanism of BPP-10c against oxidative stress was investigated. BPP-10c reduced ROS generation and lipid peroxidation in relation to cells treated ...
Source: Peptides - Category: Biochemistry Source Type: research