Renal Nerve Stimulation as Procedural End Point for Renal Sympathetic Denervation

AbstractPurpose of ReviewRenal sympathetic denervation (RDN) as treatment option for hypertension has a strong rationale; however, variable effects on blood pressure (BP) have been reported ranging from non-response to marked reductions in BP. The absence of a procedural end point for RDN is one of the potential factors associated with the variable response. Studies have suggested the use of renal nerve stimulation (RNS) to adequately address this issue. This review aims to provide an overview of the clinical and experimental data available regarding the effects of RNS in the setting of RDN.Recent FindingsAnimal studies have shown that high-frequency electrical stimulation of the sympathetic nerves in the adventitia of the renal arteries elicits an increase in BP and leads to an increased norepinephrine spillover as a marker of increased sympathetic activity and these effects of stimulation were attenuated or blunted after RDN. In a human feasibility study using RNS both before and after RDN, similar BP responses were observed. Moreover, in patients with resistant hypertension, RNS-induced changes in BP appeared to be correlated with 24-h BP response after RDN. These data suggest that RNS is a useful tool to identify renal sympathetic nerve fibers in patients with treatment-resistant hypertension undergoing RDN, and to predict the likely effectiveness of RDN treatments.SummaryIn acute procedural settings both in animal and human models, RNS elicits increase in BP and HR befor...
Source: Current Hypertension Reports - Category: Primary Care Source Type: research