Degradation rate of DNA scaffolds and bone regeneration

We examined the relationships between the degradation rate of salmon DNA scaffolds and new bone formation using a rat skin flank subcutaneous model and rat calvarial defect model. The degradation rates of the scaffolds were proportional to the durations of pretreatment with ultraviolet (UV) light irradiation. The biodegradation rates of the scaffolds were also dependent on the duration of UV irradiation, as tested a subcutaneous tissue implantation. Scaffolds irradiated with UV light for 0.5 h maintained gradual biodegradation of phosphate compared with scaffolds irradiated for 0 or 3 h. In the calvarial defect model, we found that new bone formation was higher in rats treated with scaffolds irradiated with UV light for 0.5 h compared with those irradiated with UV light for 0 or 3.0 h. The present results suggest that bioengineering of scaffolds for biodegradation is important to regenerate bone. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2018.
Source: Journal of Biomedical Materials Research Part B: Applied Biomaterials - Category: Materials Science Authors: Tags: Original Research Report Source Type: research