Dynamic and diverse changes in the functional properties of vascular smooth muscle cells in pulmonary hypertension

We present evidence for time- and location-specific changes in SMC proliferation in various animal models of PH; we highlight the transient nature (rather than continuous) of SMC proliferation, emphasizing that the heterogenic SMC populations that reside in different locations along the pulmonary vascular tree exhibit distinct responses to the stresses associated with the development of PH. We also consider that cells that have often been termed ‘SMCs’ may arise from many origins, including endothelia l cells, fibroblasts and resident or circulating progenitors, and thus may contribute via distinct signalling pathways to the remodelling process. Ultimately, PH is characterized by long-lived, apoptosis-resistant SMC. In line with this key pathogenic characteristic, we address the acquisition of a pro-inflammatory phenotype by SMC that is essential to the development of PH. We present evidence that metabolic alterations akin to those observed in cancer cells (cytoplasmic and mitochondrial) directly contribute to the phenotype of the SM and SM-like cells involved in PH. Finally, we raise the p ossibility that SMCs transition from a proliferative to a senescent, pro-inflammatory and metabolically active phenotype over time.
Source: Cardiovascular Research - Category: Cardiology Source Type: research