Determination of parameters of oxidative stress in vitro models of neurodegenerative diseases-A review.

Determination of parameters of oxidative stress in vitro models of neurodegenerative diseases-A review. Curr Clin Pharmacol. 2018 Feb 28;: Authors: Feitosa CM Abstract Oxidative stress is a major mechanism underlying the development of various neurodegenerative diseases (Alzheimer, Parkinson, Huntington and amyotrophic lateral sclerosis). Excessive formation of reactive oxygen species (ROS) and nitrogen (RNSs) can overburden the ability of the enzymatic antioxidant defense mechanisms (superoxide dismutase, catalase and glutathione reductase) and non-enzymatic (uric acid, ascorbic acid, α-tocopherol and reduced glutathione) causing the development of oxidative stress and consequently impairing the neuronal system cells by means of oxidative damage to a variety of important biological molecules such as lipids, DNA and proteins. Considering the importance of oxidative stress in neurodegenerative diseases, the present review aims to address the main parameters evaluated in vitro studies on oxidative stress in different models of neurodegenerative diseases. The literary review was conducted through Pubmed, Science Direct, LILACS, Scielo and Google using following keywords: oxidative stress, neurodegenerative diseases and parameters of oxidative stress. We selected articles published between 2002 and 2017.The in vitro evaluation of the oxidative stress related parameters have provided a preliminary view about the pathogenesis of many neurodegenerative di...
Source: Current Clinical Pharmacology - Category: Drugs & Pharmacology Authors: Tags: Curr Clin Pharmacol Source Type: research

Related Links:

Abstract The blood-brain barrier (BBB) prevents neurotoxic plasma components, blood cells, and pathogens from entering the brain. At the same time, the BBB regulates transport of molecules into and out of the central nervous system (CNS), which maintains tightly controlled chemical composition of the neuronal milieu that is required for proper neuronal functioning. In this review, we first examine molecular and cellular mechanisms underlying the establishment of the BBB. Then, we focus on BBB transport physiology, endothelial and pericyte transporters, and perivascular and paravascular transport. Next, we discuss ...
Source: Physiological Reviews - Category: Physiology Authors: Tags: Physiol Rev Source Type: research
Conclusion: The network of exosomes and miRNAs that regulates CNS homeostasis is a promising biomarker for the diagnosis and treatment of neurodegenerative diseases. PMID: 30203797 [PubMed - in process]
Source: Chinese Medical Journal - Category: General Medicine Authors: Tags: Chin Med J (Engl) Source Type: research
Abstract Spices are not only just herbs used in culinary for improving the taste of dishes. They are also sources of a numerous bioactive compounds significantly beneficial for health. They have been used since ancient times because of their antimicrobial, anti-inflammatory and carminative properties. Several scientific studies have suggested their protective role against chronic diseases. In fact, their active compounds may help in arthritis, neurodegenerative disorders (Alzheimer's, Parkinson, Huntington's disease, amyotrophic lateral sclerosis, etc.), diabetes, sore muscles, gastrointestinal problems and many m...
Source: Current Medicinal Chemistry - Category: Chemistry Authors: Tags: Curr Med Chem Source Type: research
uiz J Abstract The endocannabinoid system (ECS) exerts a modulatory effect of important functions such as neurotransmission, glial activation, oxidative stress, or protein homeostasis. Dysregulation of these cellular processes is a common neuropathological hallmark in aging and in neurodegenerative diseases of the central nervous system (CNS). The broad spectrum of actions of cannabinoids allows targeting different aspects of these multifactorial diseases. In this review, we examine the therapeutic potential of the ECS for the treatment of chronic neurodegenerative diseases of the CNS focusing on Alzheimer's disea...
Source: Biochemical Pharmacology - Category: Drugs & Pharmacology Authors: Tags: Biochem Pharmacol Source Type: research
In this study, we assessed the antioxidant properties of Larrea tridentata, collected specifically from the Chihuahuan desert in the region of El Paso del Norte, TX, USA. LT phytochemicals were obtained from three different extracts (ethanol; ethanol: water (60:40) and water). Then the extracts were evaluated in eight different assays (DPPH, ABTS, superoxide; FRAP activity, nitric oxide, phenolic content, UV visible absorption and cytotoxicity in non-cancerous HS27 cells). The three extracts were not affecting the HS27 cells at concentrations up to 120 µg/mL. Among the three extracts, we found that the mixture of...
Source: Molecules - Category: Chemistry Authors: Tags: Article Source Type: research
In conclusion, we focus on the various newer molecular mechanisms that are associated with the basic understanding of neuroinflammation in neurodegeneration.
Source: Neurochemistry International - Category: Neuroscience Source Type: research
Abstract Many evidences indicate that oxidative stress plays a significant role in a variety of human disease states, including neurodegenerative diseases. Iron is an essential metal for almost all living organisms due to its involvement in a large number of iron-containing proteins and enzymes, though it could be also toxic. Actually, free iron excess generates oxidative stress, particularly in brain, where anti-oxidative defences are relatively low. Its accumulation in specific regions is associated with pathogenesis in a variety of neurodegenerative diseases (i.e., Parkinson's disease, Alzheimer's disease, Hunt...
Source: Biometals - Category: Biochemistry Authors: Tags: Biometals Source Type: research
Publication date: Available online 7 July 2018Source: Pharmacological ResearchAuthor(s): Samira Shirooie, Seyed Fazel Nabavi, Ahmad R. Dehpour, Tarun Belwal, Solomon Habtemariam, Sandro Argüelles, Antoni Sureda, Maria Daglia, Michał Tomczyk, Eduardo Sobarzo-Sanchez, Suowen Xu, Seyed Mohammad NabaviAbstractNeurodegenerative diseases (NDs) such as Parkinson's (PD), Alzheimer's (AD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) cause significant world-wide morbidity and mortality. To date, there is no drug of cure for these, mostly age-related diseases, although approaches in delaying the pathology...
Source: Pharmacological Research - Category: Drugs & Pharmacology Source Type: research
Publication date: July 2018Source: Neurochemistry International, Volume 117Author(s): Carlo Rodolfo, Silvia Campello, Francesco CecconiAbstractNeurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD), and Amyotrophic Lateral Sclerosis (ALS), are a complex “family” of pathologies, characterised by the progressive loss of neurons and/or neuronal functions, leading to severe physical and cognitive inabilities in affected patients. These syndromes, despite differences in the causative events, the onset, and the progression of the disease, share as common feat...
Source: Neurochemistry International - Category: Neuroscience Source Type: research
Publication date: Available online 7 July 2018Source: Pharmacological ResearchAuthor(s): Samira Shirooie, Seyed Fazel Nabavi, Ahmad R. Dehpour, Tarun Belwal, Solomon Habtemariam, Sandro Argüelles, Antoni Sureda, Maria Daglia, Michał Tomczyk, Eduardo Sobarzo-Sanchez, Suowen Xu, Seyed Mohammad NabaviAbstractNeurodegenerative diseases (NDs) such as Parkinson's (PD), Alzheimer's (AD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) cause significant world-wide morbidity and mortality. To date, there is no drug of cure for these, mostly age-related diseases, although approaches in delaying the pathology...
Source: Pharmacological Research - Category: Drugs & Pharmacology Source Type: research
More News: ALS | Alzheimer's | Antidoxidants | Brain | Drugs & Pharmacology | Huntington's Disease | Neurology | Neuroscience | Parkinson's Disease | Science | Study | Vitamin C