[PERSPECTIVES] The Evolution and Ecology of Resistance in Cancer Therapy

Despite continuous deployment of new treatment strategies and agents over many decades, most disseminated cancers remain fatal. Cancer cells, through their access to the vast information of human genome, have a remarkable capacity to deploy adaptive strategies for even the most effective treatments. We note there are two critical steps in the clinical manifestation of treatment resistance. The first, which is widely investigated, requires deployment of a mechanism of resistance that usually involves increased expression of molecular machinery necessary to eliminate the cytotoxic effect of treatment. However, the emergence of a resistant phenotype is not in itself clinically significant. That is, resistant cells affect patient outcomes only when they form a sufficiently large population to allow tumor progression and treatment failure. Importantly, proliferation of the resistant phenotype is by no means certain and, in fact, depends on complex Darwinian dynamics governed by the costs and benefits of the resistance mechanisms in the context of the local environment and competing populations. Attempts to target molecular machinery of resistance have had little clinical success largely because of the diversity within the human genome—therapeutic interruption of one mechanism simply results in its replacement by an alternative. We explore an alternative strategy for overcoming treatment resistance that seeks to understand and exploit the critical evolutionary dynamics that g...
Source: Cold Spring Harbor perspectives in medicine - Category: Research Authors: Tags: Cancer Evolution PERSPECTIVES Source Type: research