Patient-specific CT-based 3D passive FSI model for left ventricle in hypertrophic obstructive cardiomyopathy.

Patient-specific CT-based 3D passive FSI model for left ventricle in hypertrophic obstructive cardiomyopathy. Comput Methods Biomech Biomed Engin. 2018 Feb 21;:1-9 Authors: Deng L, Huang X, Yang C, Song Y, Tang D Abstract Left ventricular outflow tract obstruction is observed in 70% of patients with hypertrophic cardiomyopathy, which occurs in about 1 of every 500 adults in the general population. It has been widely believed that the motion of the mitral valve, in particular, its systolic anterior motion (SAM), attributes significantly to such obstruction. For a better understanding of the mitral valve motion, a 3D patient-specific fluid-structure interaction model of the left ventricle from a patient with hypertrophic obstructive cardiomyopathy based on computed tomography (CT) scan images was proposed in this study. Displacement, structural stress, pressure, flow velocity and shear stress within the left ventricle and mitral valve were extracted to characterize their behavior. The maximum shear stress on mitral valve was 9.68 [Formula: see text]. The pressure on its posterior leaflet was higher than that on the anterior leaflet and the peak pressure on the mitral valve was 93.5 mm Hg which occurred at pre-SAM time. High angles of attack (54.3 ± 22.4°) were found in this patient. The methodology established in this study may have the potential to clarify the mechanisms of SAM and ultimately optimize surgical planning by compar...
Source: Computer Methods in Biomechanics and Biomedical Engineering - Category: Biomedical Engineering Authors: Tags: Comput Methods Biomech Biomed Engin Source Type: research