Phytol suppresses melanogenesis through proteasomal degradation of MITF via the ROS-ERK signaling pathway

Publication date: Available online 24 February 2018 Source:Chemico-Biological Interactions Author(s): Gyeong-A. Ko, Somi Kim Cho Phytol (3,7,11,15-tetramethyl-2-hexadecen-1-ol) is an acyclic monounsaturated diterpene alcohol generated from chlorophyll metabolism that exerts anti-inflammatory, antithrombotic, antimicrobial, and antitumor effects. However, the effect of phytol on melanogenesis and the underlying molecular mechanisms of its inhibition remain unknown. Here, we found that phytol suppressed α-melanocyte-stimulating hormone-induced melanogenesis in B16F10 murine melanoma cells without any toxic effects. Phytol significantly attenuated melanin production by reducing the expression of tyrosinase and tyrosinase related protein 1. Treatment with phytol inhibited the expression of microphthalmia-associated transcription factor (MITF) by phosphorylating extracellular signal-regulated protein kinase (ERK). The ERK inhibitor PD98059 restored MITF expression and prevented the anti-melanogenic effect of phytol. We found that the ERK inhibitor coincidently abrogated MITF ubiquitination and degradation, suggesting that the ERK pathway is involved in phytol-induced ubiquitination of MITF. Furthermore, our data show that reactive oxygen species (ROS) production was increased in cells treated with phytol. Consistently, a ROS scavenger inhibited ERK phosphorylation and restored MITF degradation. Accordingly, the intermediary role of ROS was confirmed in phytol-induced MITF deg...
Source: Chemico Biological Interactions - Category: Biochemistry Source Type: research