The role of immune cell subpopulations in the growth and rejection of TC-1/A9 tumors in novel mouse strains differing in the H2-D haplotype and NKC domain.

The role of immune cell subpopulations in the growth and rejection of TC-1/A9 tumors in novel mouse strains differing in the H2-D haplotype and NKC domain. Oncol Lett. 2018 Mar;15(3):3594-3601 Authors: Indrová M, Rossowska J, Pajtasz-Piasecka E, Mikyšková R, Richter J, Rosina J, Sedlacek R, Fišerová A Abstract The present study aimed to elucidate the role of cluster of differentiation (CD)8+, CD4+, natural killer (NK), and myeloid (CD11b+) cells in the course of the growth and rejection of experimental major histocompatibility complex (MHC) class I-deficient, HPV16 E6/E7-associated TC-1/A9 tumors in mice. Stable mouse lines (F30) generated by inbreeding of Balb/c and C57BL/6 strains, which were characterized by H-2Db+d-NK1.1neg (B6-neg) and H-2Db-d+NK1.1high (Balb-high) phenotypes, were used for the present study. The novel strains spontaneously regressed tumors in 70-90% of cases. Ex vivo histological analysis of the tumor microenvironment in cryosections showed an indirect correlation between the growth of the transplanted tumor (progressor vs. regressor mice) and the proportion of immunocompetent cell infiltration in the tumors. The regressor mice exhibited a higher infiltration of tumors with CD4+ and CD8+ cells, and in Balb-high with NK cells as well, compared with the progressors. All tumor transplants also indicated a huge infiltration of CD11b+ cells, but this infiltration was not dependent on the stage of the TC-1/A9 tu...
Source: Oncology Letters - Category: Cancer & Oncology Tags: Oncol Lett Source Type: research