Coiled-coil oligomerization controls nanodomain organization of the plasma membrane REMORINs.

Publication date: Available online 23 February 2018 Source:Journal of Structural Biology Author(s): Denis Martinez, Anthony Legrand, Julien Gronnier, Marion Decossas, Paul Gouguet, Olivier Lambert, Mélanie Berbon, Loris Verron, Axelle Grélard, Veronique Germain, Antoine Loquet, Sébastien Mongrand, Birgit Habenstein REMORINs are nanodomain-organized proteins located in the plasma membrane and involved in cellular responses in plants. The dynamic assembly of the membrane nanodomains represents an essential tool of the versatile membrane barriers to control and modulate cellular functions. Nevertheless, the assembly mechanisms and protein organization strategies of nanodomains are poorly understood and many structural aspects are difficult to visualize. Using an ensemble of biophysical approaches, including solid-state nuclear magnetic resonance, cryo-electron microscopy and in vivo confocal imaging, we provide first insights on the role and the structural mechanisms of REMORIN trimerization. Our results suggest that the formation of REMORIN coiled-coil trimers is essential for membrane recruitment and promotes REMORIN assembly in vitro into long filaments by trimer-trimer interactions that might participate in nanoclustering into membrane domains in vivo.
Source: Journal of Structural Biology - Category: Biology Source Type: research
More News: Biology | Nanotechnology