Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide

Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide Nature 554, 7693 (2018). doi:10.1038/nature25747 Authors: Vinod K. Sangwan, Hong-Sub Lee, Hadallia Bergeron, Itamar Balla, Megan E. Beck, Kan-Sheng Chen & Mark C. Hersam Memristors are two-terminal passive circuit elements that have been developed for use in non-volatile resistive random-access memory and may also be useful in neuromorphic computing. Memristors have higher endurance and faster read/write times than flash memory and can provide multi-bit data storage. However, although two-terminal memristors have demonstrated capacity for basic neural functions, synapses in the human brain outnumber neurons by more than a thousandfold, which implies that multi-terminal memristors are needed to perform complex functions such as heterosynaptic plasticity. Previous attempts to move beyond two-terminal memristors, such as the three-terminal Widrow–Hoff memristor and field-effect transistors with nanoionic gates or floating gates, did not achieve memristive switching in the transistor. Here we report the experimental realization of a multi-terminal hybrid memristor and transistor (that is, a memtransistor) using polycrystalline monolayer molybdenum disulfide (MoS2) in a scalable fabrication process. The two-dimensional MoS2 memtrans...
Source: Nature - Category: Research Authors: Tags: Letter Source Type: research