Zoledronate modulates intracellular vesicle trafficking in mast cells via disturbing the interaction of myosinVa/Rab3a and sytaxin4/VAMP7.

Zoledronate modulates intracellular vesicle trafficking in mast cells via disturbing the interaction of myosinVa/Rab3a and sytaxin4/VAMP7. Biochem Pharmacol. 2018 Feb 15;: Authors: Liu S, Sahid MNA, Takemasa E, Maeyama K, Mogi M Abstract Nitrogen-containing bisphosphonates (NBPs) have been widely used as bone anti-resorptive drugs for the treatment of osteoclast-dependent bone disorders. Zoledronate is currently the most potent NBP, and has potential as an inhibitor of farnesyl pyrophosphate synthase. The present study was undertaken to elucidate the possible effects of zoledronate on FcεRI-dependent mast cell activity in vitro, which is essential for in maintaining homeostasis of the gastrointestinal mucosa. Treatment with zoledronate significantly diminished exocytosis of mast cells, which was reflected by a decrease of FcεRI-dependent histamine release compared to that in vehicle-treated mast cells. Our single-vesicle monitoring and biochemical results suggested that zoledronate modulates intracellular formation of the myosinVa/Rab3a complex and syntaxin4/VAMP7 complex, which are critical in vesicle motility, and therefore disturbs exocytosis via suppression of the velocity of intracellular vesicles and inhibition of membrane fusion. Our findings imply that oral administration of zoledronate could modulate mucosal immune function by blocking mast cell function, and this risk should be of concern in the clinical usage of NBPs. ...
Source: Biochemical Pharmacology - Category: Drugs & Pharmacology Authors: Tags: Biochem Pharmacol Source Type: research