Resveratrol Suppresses Rotenone ‐induced Neurotoxicity Through Activation of SIRT1/Akt1 Signaling Pathway

ABSTRACT Rotenone is a common pesticide and has been reported as one of the risk factors for Parkinson disease. Rotenone can cause neuronal death or apoptosis through inducing oxidative injury and inhibiting mitochondrial function. As a natural polyphenolic compound, resveratrol possesses the antioxidant capacity and neuroprotective effect. However, the mechanism underlying the neuroprotective effect of resveratrol against rotenone‐induced neurotoxicity remains elusive. Here, we treated PC12 cells with rotenone to induce neurotoxicity, and the neurotoxic cells were subjected to resveratrol treatment. The CCK8 and LDH activity assays demonstrated that resveratrol could suppress neurotoxicity induced by rotenone (P < 0.01). The DCFH‐DA assay indicated that resveratrol reduced the production of reactive oxygen species (ROS). JC‐1 and Hoechst 33342/PI staining revealed that resveratrol attenuated mitochondrial dysfunction and cell apoptosis. Moreover, resveratrol reversed rotenone‐induced decrease in SIRT1 expression and Akt1 phosphorylation (P < 0.05). Furthermore, when the SIRT1 and Akt1 activity was inhibited by niacinamide and LY294002, respectively, the neuroprotective effect of resveratrol was remarkably attenuated, which implied that SIRT1 and Akt1 could mediate this process and may be potential molecular targets for intervening rotenone‐induced neurotoxicity. In summary, our study demonstrated that resveratrol reduced rotenone‐induced oxidative d...
Source: The Anatomical Record Part B: The New Anatomist - Category: Anatomy Authors: Tags: Full Length Article Source Type: research