Mechanical disruption of the blood –brain barrier following experimental concussion

AbstractAlthough concussion is now recognized as a major health issue, its non-lethal nature has limited characterization of the underlying pathophysiology. In particular, potential neuropathological changes have typically been inferred from non-invasive techniques or post-mortem examinations of severe traumatic brain injury (TBI). Here, we used a swine model of head rotational acceleration based on human concussion to examine blood –brain barrier (BBB) integrity after injury in association with diffuse axonal injury and glial responses. We then determined the potential clinical relevance of the swine concussion findings through comparisons with pathological changes in human severe TBI, where post-mortem examinations are poss ible. At 6–72 h post-injury in swine, we observed multifocal disruption of the BBB, demonstrated by extravasation of serum proteins, fibrinogen and immunoglobulin-G, in the absence of hemorrhage or other focal pathology. BBB disruption was observed in a stereotyped distribution consistent with bi omechanical insult. Specifically, extravasated serum proteins were frequently observed at interfaces between regions of tissue with differing material properties, including the gray–white boundary, periventricular and subpial regions. In addition, there was substantial overlap of BBB disruption wi th regions of axonal pathology in the white matter. Acute perivascular cellular uptake of blood-borne proteins was observed to be prominent in astrocytes (GFAP-...
Source: Acta Neuropathologica - Category: Neurology Source Type: research